GPU cloud from your terminal
Launch, manage, and SSH into GPU instances without leaving your terminal. The way developers are meant to use cloud GPUs.
$ npm install -g packet-gpu-cli$ packet login
✓ Logged in as developer@company.com
$ packet gpus
┌────────────────┬──────┬──────────┬───────────┐
│ GPU │ VRAM │ Price/hr │ Status │
├────────────────┼──────┼──────────┼───────────┤
│ RTX PRO 6000 │ 96GB │ $1.29 │ available │
│ H100 │ 80GB │ $2.49 │ available │
│ B200 │180GB │ $4.99 │ available │
└────────────────┴──────┴──────────┴───────────┘
$ packet launch --gpu rtx-pro-6000 --setup vscode
⠋ Launching RTX PRO 6000 with VS Code in Browser...
✓ Launched RTX PRO 6000
Instance ID: 12847
Setup: 💻 VS Code in Browser
✓ Instance is ready!
SSH: ssh ubuntu@gpu-12847.packet.ai -p 30122
$ packet setup jupyter-torch 12847
⠋ Running 🔥 Jupyter + PyTorch setup (~5 min)...
✓ 🔥 Jupyter + PyTorch is ready!
jupyter port 8888 (token: packet)
$ packet ssh 12847
ubuntu@gpu-12847:~$ nvidia-smi
$ packet terminate 12847
✓ Instance 12847 terminated
Built for developers
Everything you need to manage GPU instances without leaving your workflow.
Launch in Seconds
One command to provision a GPU. No clicking through dashboards.
Secure Auth
API key stored locally. Supports env vars for CI/CD pipelines.
Auto-Setup
Launch with VS Code, Jupyter, or PyTorch pre-installed. One flag: --setup vscode
Scriptable
Use in bash scripts, Makefiles, or CI/CD. JSON output available.
Direct SSH
packet ssh connects instantly. No config files needed.
Cost Tracking
See pricing and runtime costs directly in your terminal.
Cross-Platform
Works on macOS, Linux, and Windows. Node.js 18+ required.
Quick Start
Install the CLI
npm install -g packet-gpu-cliAuthenticate
Run packet login and enter your API key. Get one from your account settings.
packet login --key your-api-keyLaunch a GPU
packet launch --gpu rtx-pro-6000 --waitConnect via SSH
packet ssh <instance-id>Command Reference
packet loginAuthenticate with your API keypacket logoutRemove stored credentialspacket whoamiShow current account and balancepacket gpusList available GPU types and pricingpacket launch --gpu <type>Launch a new GPU instancepacket launch --setup <preset>Launch with auto-setup (vscode, jupyter, etc.)packet setup listList available auto-setup presetspacket setup <preset> <id>Run setup on an existing instancepacket psList your running instancespacket ssh <id>SSH into an instancepacket logs <id>View instance status and infopacket terminate <id>Terminate an instanceUse in CI/CD
Run GPU workloads in GitHub Actions, GitLab CI, or any pipeline.
# .github/workflows/train.yml
name: Train Model
on: [push]
jobs:
train:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install packet CLI
run: npm install -g packet-gpu-cli
- name: Launch GPU and train
env:
PACKET_API_KEY: ${{ secrets.PACKET_API_KEY }}
run: |
packet login --key $PACKET_API_KEY
# Launch GPU
INSTANCE=$(packet launch --gpu h100 --wait | grep "Instance ID" | awk '{print $3}')
# Run training
packet ssh $INSTANCE -c "cd /workspace && python train.py"
# Cleanup
packet terminate $INSTANCE -fReady to try it?
Install the CLI and launch your first GPU in under a minute.
